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Hydrodynamic properties for a class of nondiffusive particle systems are 
investigated. The method allows one to study local equilibria for a class of 
asymmetric zero-range processes, and applies as well to other models, such as 
asymmetric simple exclusion and "misanthropes." Attractiveness is an essential 
ingredient. The hydrodynamic equations present shock wave phenomena. 
Preservation of local equilibrium is proven to hold away from the shocks. The 
problem of breakdown of local ergodicity at the shocks, which was investigated 
by D. Wick in a particular model, remains open in this more general setup. 

KEY WORDS: Infinite-particle system; attractiveness; coupling; hydro- 
dynamic equation; zero-range process; conservation law. 

1. I N T R O D U C T I O N  

In this art icle we invest igate  the h y d r o d y n a m i c  behav io r  of  a class of 
s tochast ic  par t ic le  systems under  Euler  scaling. More  precisely,  we are con- 
cerned with nondiffusive types of one-d imens iona l  models ,  whose 
h y d r o d y n a m i c  equa t ion  will be a non l inea r  conserva t ion  law, thus 
exhibi t ing shock waves for some init ial  data.  We  extend results con ta ined  
in Refs. 11, 12, 16, 3, and  4; and  our  main  goal  is to provide  a more  unified 
t rea tment ,  exploi t ing  the "a t t rac t iveness"  present  in our  models.  F o r  sim- 
pl ici ty we shall  s tate the results  for a class of zero- range  processes,  (1) but  it 
will be clear  how the s a m e  ideas app ly  to asymmet r i c  simple exclusion 
processes,  (16'3~ as well as the more  general  models  in t roduced  in Ref, 5. 

F o r  the physical  mot iva t ions  and  genera l  discussions of the p rob lems  
under  s tudy we refer to Refs. 6 and  15 and  references cited therein. 

As not iced  by M o r r e y  (14) in the s tudy  of fluid dynamics ,  the 
a s sumpt ion  of  "prese rva t ion  of  local  equi l ib r ium" al lows one to derive the 

Instituto de Matemfitica Pura e Aplicada, Rio de Janeiro, Brazil. 

265 

0022-4715/87/0400-0265505,00/0 �9 1987 Plenum Publishing Corporation 
822/47/1-2-t 8 



266 Andjel and Vares 

Euler equation (hydrodynamic equation). This assumption involves a 
suitable family of initial measures and time and space scale changes (Euler 
scaling in his case). Nevertheless, very little is known concerning the 
validity of this assumption for realistic (physical) systems (see Ref. 15 and 
the references therein). 

In the context of stochastic dynamics, which is simpler to deal with, 
there is a greater variety of examples, especially for diffusive-type scaling, 
where the hydrodynamic equation is a diffusion equation. In such 
situations there is a certain general theory, under the assumption of local 
equilibrium. ~6) 

Generally, however, checking preservation of local equilibrium is not 
easy, and the main point is that, for most of the examples so far, this 
already involves the identification of the parameters describing local 
equilibrium. 2 

In Refs. 3, 4, 16, and 18 examples have been studied which lead to a 
nonlinear conservation law, presenting shock waves. The connection 
between the behavior at the microscopic level and the propagation of 
shock waves deserves much study. One important result in this direction 
was obtained by D. Wick, who gave an example in which the local 
equilibrium assumption fails where shock waves occur. There is a rupture 
of "local ergodicity," leading to a superposition of different equilibria at the 
wavefront. (See also Refs. 2 and 7 for similar situations.) 

Here we treat a more general class of models and show that in the 
smooth case, or away from the shock, we do have preservation of local 
equilibrium, the local parameters being described by the entropy solution 
of the hydrodynamic equation. The extremely interesting question concern- 
ing the behavior at the shock remains open in this more general setup. 

In Section 2 we specify the class of models we will be dealing with, and 
state the main results. The proofs are given in Sections 3 and 4. Finally, in 
Section 5, we discuss their more general validity, including, e.g., models 
such as those in Ref. 5. The proofs given here do not use ergodic theorems 
or special theorems for queuing systems. These played an important role in 
Refs. 3, 4, and 18. We also obtain the results of Refs. 11 and 12 without 
resorting to the special stochastic order introduced in Ref. 11. 

2. DESCRIPTION OF THE M O D E L - - R E S U L T S  

In the one-dimensional zero-range process we have infinitely many 
particles moving on 2; they are indistinguishable, so we keep track of the 

2 Recall also the possibility of deriving hydrodynamic equations without proving local 
equilibrium, and showing instead "propagation of chaos. ''(6,15) 
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occupation number at each x e E, t/l(x), which should be always finite. At 
each nonempty site x, the rate at which one of the particles will jump is a 
function of its occupation number g(th(X)), and it jumps according to a 
probability transition function p(x, y). 

The construction of a Markov process (r/,) on N ~ according to this 
intuitive description in carried out in Refs. 8 and 1. Clearly, one must 
impose conditions on g(-) and p( ' ,  ") to avoid, e.g., infinitely many par- 
ticles jumping to a fixed site. If g(.)  is bounded and p( . , - )  is translation- 
invariant [i.e., p(x, y ) = p ( 0 ,  y - x ) ]  with Zy  tY[ p(0, y ) <  +o% the con- 
struction can be done for any initial configuration ~/~ N z (Ref. 8). Under 
more general conditions, such as relaxing the boundedness of g to 
supk ]g(k+ 1 ) -g (k ) ]  < +o% it is necessary to restrict the set of allowed 
configurations to a suitable subset E_a Nz (see Refs. 1 and 10 for such con- 
structions). 

For reasons that will be clear later, we make the following 
assumptions throughout Sections 2-4: 

Assumptions 2.1. 

(a) The function k ~ g(k) is monotone (nondecreasing) and boun- 
ded; 0 = g(0)<  g(1 ). 

(b) p(x, y ) = p ( 0 ,  y - x )  for all x, y integers; ~ , .  lY[ p(0, y ) <  +oo; 
and 

y ~f~,yp(O, y)~(O, +oo) 

The previous description corresponds to the following pregenerator L, 
acting on cylinder functions f on Nz: 

Lf(tl) = Y. g(q(x)) p(x, y)[f(t/x'-'') - f ( t / ) ]  (2.1a) 

with 
l r / (x ) -  I if z = x  

r/-~'Y(z)= q ( y ) +  1 if z =  y (2.1b) 

t/(z) if z C x ,  y 

provided r/(x) >~ 1, and x 4= y; r/x'y -= q otherwise. 
Under (a) and (b) we know (cf. Refs. 8, 10, and 1) that for each r/E N z 

there exists a unique probability measure P,  on the Skorohod space 3 
D([0, +oo); t~ z) so that 

3 t~z is taken  with p roduc t  topology,  given, e.g., by the metric 

dtr/, r = ~ 2-iXl(lr/(x) _ ~(x)[ ) /[  1 + [q(x) - r ] 
x 
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( i )  P . [ ~ ( 0 )  = ~ ]  = 1 

(ii) Under P , : f ( ~ / t ) - ~  Lf(tls) ds is a martingale with respect to the 
canonical filtration, for each bounded cylinder function fi 

Moreover, we do have: 

(iii) P .  is Markovian with respect to the canonical filtration. 

(iv) ~I~P,(A) is Borel-measurable for each Borel set A in 
D([O, +oo),  ~z,). 

We let (S,)t~>o be the Markov semigroup associated to our process, 
i.e., Stf(tl)=~f(rlt)dP, for f b o u n d e d  continuous function on N~. If/~ is a 
probability measure on N ~, pSt will denote the law of tl t when t/o is dis- 
tributed according to p, i.e., gSt(f)= ~ Stf(tl) p(dtl). From the construction 
in Ref. 1 (or by several other methods) we know that (St) is a strongly con- 
tinuous Markov (and Feller) semigroup of operators on the space of boun- 
ded continuous functions of N~, whose generator extends L. 

In the final section we shall make a few comments on relaxing boun- 
dedness conditions on g ( ' )  and other extensions. Nevertheless, the 
assumption of monotonicity of g( ')  will be crucial in this article. Our 
arguments rely strongly on the "attractiveness" of the model, which is a 
consequence of such monotonicity. This notion of "attractiveness ''~3) 
corresponds to a certain order preservation by the semigroup (St). For  
such a definition we consider on N z the partial ordering given by 

tl ~< i if t/(x) ~< ~(x) for all x (2.2) 

and the corresponding stochastic order between probability measures on 
Nz: Pl ~<P2 means that we can construct fi probability measure on Nz x Nz 
with fi(. x N z) =/~1, fi(N ~ x �9 ) = if2, and supported by { (t/, ~): t/~< ~ } (see 
Ref. 13 for equivalent definitions). It is well known r that the monotonicity 
of g( ' )  guarantees that /~1 ~< ~2 implies p~St ~< pzSt for each t. In fact, for 
any given configurations q ~< i it is possible to construct a coupling (q ,  i t)  
of zero-range processes with initial states q and i, respectively, so that 
qt ~< i t  for all t ~> 0. (We refer to Ref. 1 for the details, but recall one such 
coupling in the proof of Lemma 3.3.) 

N o t a t i o n s  2.2: 

(a) On N z we let ( ~ ) ~ z  denote the group of shifts, given by 
z~tl(y)=~l(y+x), for tteN z, x, yeY_. Also, if ff is a probability measure 
on N Z, we let (pv~)(A)=p(r~A) for any Borel subset A of N ~. 

(b) Let J be the set of those probability measures on N~ that are 
invariant under (S,), and let 5z be the set of probability measures invariant 
under (v~)~ ~. 
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It is known that under more general assumptions than ours, the set of 
extremal measures in J n Y can be characterized as a continuous family 
{Vp:0 ~< p < + ~  } of probability measures on ~ ,  such that: 

(i) vp is a product measure 

(ii) p=vp(q(0)) 

In fact, the vp are product measures given by 

1 ~pk 
v , ( ~ ( x )  = k ) =  

Z~ g(1)-. ,  g(k)' 

1 

Z~ 

where <p=~o(p)e E0,1im,~ +~ g(k)) and Z~ 
[With this notation ~0(p)= Vp(g(~l(O))).] 

k~>l 

k = 0  (2.3) 

is the normalizing factor. 

R e m a r k  2.3. W h e n p ( 0 , 1 ) + p ( 0 , - 1 ) = l  it is true t h a t J _ ~ 5  P,as  
proven in Ref. 1. For this problem in a more general context we also refer 
to Ref. 1. (This fact will not be needed here.) 

In this article we are interested in the question of "preservation of 
local equilibrium" and the "derivation of the hydrodynamic equation." 
That is, we want to investigate if, for a given family {/~} of approximate 
local equilibrium distributions (informally #~r~x~-~l should be close to some 
vp(x)) we can find a suitable time scaling T(e, t) such that the measures 
#~x~ ~1ST~.,) are approximately equal to Vp(x,,), where the evolution of 
p(x, t) is given by some known equation. Here we restrict ourselves to 
{/t~}'s that are already product measures for which 

~ ( ~ ( x )  = ~)  = vp0~x~(~(0) = ~)  

for some initial profile Po('). 
In order to motivate the hypotheses of our theorems, let us assume, 

for the moment, that local equilibrium is preserved with T(e, t)=te -~ 
Then, a simple computation with the generator L, recalling the form of vp 
[given by (2.3)], shows that p(x, t) "should" satisfy the equation 

0__O_P (x, t) + 7 ~ ~p(p(x, t)) = 0 (2.4) 
8t o x  

where 

q~(p) = vp(g(q(O))) (2.5) 
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according to (2.3), Thus, if q~(-) is strictly concave (or convex) in (0, + co), 
this is a genuinely nonlinear conservation law (in the language of Lax (9)) 
and it presents shock waves for increasing (resp. decreasing) initial data. 
Having this in mind, it is natural to state the following: 

T h e o r e m  2.4. For  0 ~< ~ < fi < +o% let p ~  be the product measure 
such that 

#~,z(tl(x) = k) = ~ v~(tl(x) = k) if x < 0 
~v~(tl(x ) = k )  if x ~ 0  

for all k >~ 1. 
Under Assumptions 2.1, and supposing, moreover, 

q~(.) defined by (2.5) is concave, we have 

lim tt~,~z~t?S~ = ~ v~ if v<v~ 
t ~ + ~  [v~ if v > v ,  

with 

(Nothing is said at v = v~ !) 

R e m a r k  2.5. The function 

(2.6) 

that the function 

(2.7) 

p ( x , t ) = { ~  if x < v c t  
if x >~ vct 

is the Lax solution of (2.4) for po(X)=Cd(x<o)+fl~(~>01~ and so 
Theorem 2.4 says that for such an initial profile /~,,SEx~ 'lSt~ ~ converges 
to vp(x,t) for x / tCv~ ,  i.e., away from the discontinuity line 
[p (x ,  t) = po(X- v~ t ) ] .  

R e m a r k  2.t}. In the particular case of constant jump rates [i.e., 
g(k) = ~ (k>~ ~)) the vp are the product of geometric distributions, and so 

q)(p) = Vp(g(rl(O))) = p(1 + p) -~ 

so that all the conditions for Theorem 2.4 are satisfied in this case, with 
v,. = y(1 + c~)-~ (1 + fi)-~. At the end of Section 5 we shall investigate sim- 
ple conditions on g ( ' )  implying the concavity of ~0(p). 

A possible generalization of Theorem 2.4 is: 

C o n j e c t u r e  2.7. Let us suppose: 

(i) Assumptions 2.1. 

(ii) The function ~0(.) [defined by (2.5)] is strictly concave. 
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We now take #~ to be product measures such that 

#~(tl(x) = k )  = vp0~x~(,7(0 ) = k )  

for all x EZ, k>~ 1, where P0(') is increasing, bounded, and piecewise 
continuous. Letting p(., .) be the "entropy solution" of (2.4) with initial 
condition p(x, 0 ) =  po(X); then: 

lim #~Ex~ ~lS,~ -j = vp~x, o 
e,L0 

for all (x, t), such that x is a continuity point of p(., t). 

R e m a r k  2.8. Let us recall (cf. Ref. 17, Chapter 15) that a bounded, 
measurable function p(x, t) is said to be a weak solution of (2.4) if 

ff{(~o,>- . . . .  o} [PtP'+ 7~~ f p~ (2.8) 

for all test functions ~ of class C 1 and compact support on N x [0, + oo). It 
is easy to check (see, e.g., Ref. 17, p. 248) that (2.8) implies restrictions on 
the curves of discontinuity of such p(., - ); this "jump condition" determines 
the slope of discontinuity lines. Nevertheless, (2.8) is not strong enough to 
guarantee uniqueness of "solution." One way to pick an "interesting" 
solution is by looking at the equation 

Op . . . .  c~ ~=p 
~--T + ~ ~p~ ~ p = ~ a.,c ~ 

with a small noise term and letting ~ -~ 0. The limit (which under our con- 
ditions on ~o is unique) will be the "entropy solution." We refer to Ref. 17, 
Chapters 15 and 16 for these problems and other related definitions. 

Remark 2.9. If the initial P0(') is increasing and continuous and T 
denotes the time of the appearance of the first discontinuity in p(., t), say 
(Xo, T), nothing has been proven so far concerning the microscopic state of 
the zero-range process around the corresponding macroscopic point 
(Xo, T). This is open even for the case examined in Ref. 18, i.e., 
g (k )=  ~ (k~ t) and p(x, x+ 1)= 1, though the conjecture is clear, based on 
the results of Wick. 

We now state the following analogs of Theorem 2.4 and Conjec- 
ture 2.7 for the decreasing initial profile. Now (2.4) indicates what to 
expect, since the classical solution is unique and known. 

Theorem 2.10. Under Assumptions (i) and (ii) of Conjecture 2.7, 
let/t~,r be defined by Eq. (2.6), but now we take 0~<fl<c~< +oo. Then 

lim #~,~r~,lS t=  vp(,~) (2.9a) 
t ~  l -oO 



272 Andjel and Vares 

where 

for v ~< 7~o'(e) 

p (v )=  ((p')-l(v/7) for yq)'(e)~<v~<Tcp'(/3) (2.9b) 

/~ for v/> y~0'(/3) 

[-(q)')-~ denotes the inverse function of (p', which is a strictly decreasing C ~ 
function.] 

T h e o r e m  2.11. Under assumptions (i) and (ii) of Conjecture 2.7, 
let us now take #'  as product measures such that 

#~(t/(x) = k) = vo0(~)(r/(0 ) = k) (2.10) 

for all x e 2 and k/> 1, where Po(" ) is a strictly decreasing, C 1, and bounded 
function of N into [0, + oo). Then, for each x e R, t >~ 0: 

lim #~z E~-~3 S~-~ = vp(~,~) (2.11 ) 
e+O 

where p(.,  .) is the unique classical solution of (2.4) with initial condition 
p(x, o) = po(X). 

Throughout  the next section we suppose: 

(A) Assumptions 2.1. 

(B) The function p-~, (p(p) = ar vp(g(t/(O))) is concave. 

(When necessary we shall use the smoothness of q~; this follows easily from 
the definitions.) 

3. PROOF OF T H E O R E M  2.4 

The main point of the proof is to exploit the "attractiveness" of the 
model, and it will be done in several steps. 

I . e m m a  3.1. Let/~ be a probability measure on N z such that 

(i) v~<~#<~v/~ for some 0 ~ < e < f i <  + ~ .  

(ii) Either #~'1 ~ # or #zl ~> #. 

Then, any sequence Tn 1" +oo has a subsequence Tnk for which there exists 
D dense (countable) subset of R such that for each v e D 

lim 1----[ r"k ~+oo T,~3o #~[~,]S, dt=#~ (3.1) 

for some #~edc~. 
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Proof. First, let us make two simple but useful remarks: 

1. Since #,.<vB, we have (1/T)~#rE~lS, dt<~v ~ for all T > 0 ,  y e N ,  
so that 

(T #rE~dS, dt: T > 0 ,  ve  

is a precompact  set on the space of probabili ty measures on Nz (w*- 
topology). 

2. From Assumption 2.1(b) we see that ~ and S, commute (viewed 
as operators on the space of probability measures on N~). 

Let us assume (i) and (ii) above, and let T, .z +oo. To fix ideas, we 
assume #T1/> # in (ii), the other case being analogous. Letting A be a coun- 
table dense subset of R, a diagonal argument provides subsequence (T.~) so 
that 

1 

converges as k ~  +oo, provided v~A. We call #~ this limit, and let (v~A) 

p(v) = #~(q(0)) (3.2a) 

L ( v ) =  lira #~rn(r/(O)) (3.2b) 
n / "  + ~  

/(v)= lira #v%(~(0)) (3.2c) 
n , ,  oo 

Since the sequences in (3.2b) and (3.2c) are monotone and bounded, both 
limits exist, and l(-)~< p(.)~< L( . )  on A. Also, p( . )  is increasing in A, and 
so we can find a countable, dense set D such that p(-)  has a unique increas- 
ing extension to A u D, still denoted by p(.),  which is continuous at each 
v ~ D. Taking a further subsequence, we could assume 

lira 1_~ rj r, k #r~,lSt dt = #v (3.3) 
k Tn k o 

for some probabili ty #v, if v ~ A w D, and that (3.2a) holds for v ~ A w D. 
Extending l (  ) and L(" ) to A u D through the relations (3.2b) and (3.2c), it 
is easy to see that u < v implies p(u) <<. L(u) <~ l(v) <~ p(v). Thus, p = l = L at 
the continuity points of p(.) ,  in particular, for rED. Now, (3.3) and 
#z 1 ~> # imply that #vr I ~> #~. Together with p(v)= L(v) this gives #~ ~ 5C 
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Now fix r e D  and let g,=S,rE~,1 (t>~O). Then S,+.,=S,S, or 
S , + , =  S,S,z~ and we get (since #rl  >~/L) 

and 

#v g~ = lim 1_  F r.~/~S, ~, dt 
k T n  k ~o 

~< lim ~ 1  for~ +, dt -- #~, 
Ir T n k  

l n r r  

s~ = lira T.~ ]o ~ ~ '  S~ m 

>l im 1--~T"~gV lg,+,dt=#~v ,=#~ 
k T n k  v 0 

Thus, gv is S,-invariant. Since it is also translation-invariant, we have 
# ~ E J ,  concluding the proof. | 

L o m m a  3.2. With the same conditions and notations of 
Lemma 3.1, and for v~D, we can write t~v=~vp)~v(dp), where )~ is a 
probability on [c~, fl]. Also, if u < v are in D, 

(~-~ ) ,F (v ) -F(u )  (3.4) 
[uT,,k] <~ x <~ [ v T ~ ]  

with 
l" (. 

F(w) = w j pitw(dp) - ,/ j q~(p) ),~.(dp) (3.5) 

for weD. 

Proof. The first assertion follows immediately from Lemma 3.1 and 
the characterization of ~r c~ 5 P previously mentioned (cf. Ref. 1). It remains 
to prove (3.4). For this we define, if u < v are in D, 

[vt] 

c(t)= ~ ~s,(~(x))+(vt- [vt])~s,(~([,t]+ l)) 
x = [ut] + 1 

+ ( [u t ]  + 1 - ut) t~S,(tl([ut]) ) (3.6) 

Then G(t) = ~o G'(s) ds and if ut, vt q~ Z, 

a ' ( t )  = v#st(r l ( [Vt  ] q- I ) ) -  u#St ( r l ( [u t ] ) )  
[vt] 

+ S ~S,(L~(x)) + (v t -  [vt]) ~S,(L~([vt] + 1)) 
[ut] + 1 

+ ( [u t ]  + 1 - u t )  #S,(Lrl([Ut])) (3.7) 
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Now, using (3.3), the translation invariance of #v, and the expression for 
Lrl(x ) given by (2.1), quite standard calculations yield 

G( Tn~ ) _ 1 
f r"k G'(s) d s ~ F ( v ) - F ( u )  

T. k Tn k ~o 

if u < v both in D. But the difference between G(TJ/T~k and the 1.h.s. of 
(3.4) is bounded by fi/Tnk, so that (3.4) follows. The details of this com- 
putation, though quite elementary, appear in the Appendix. 

k o m m a  3.3. With the same notations of Lemma 3.1, if we take 
# =#~.r~ defined by (2.6), with 0~<c~<fi< +o% then 

{ v~ if v~D, v<v~ (3.8) 
~t~= v~ if rED, v>v~, 

where v C is given by Eq. (2.7). 

Proof. This will be divided into two parts. First we use a coupling 
argument (similar to the one employed in Section 2 of Ref. 3) to get the 
existence of_v, f (finite) so that if v E D and v > ~, then 2~ = 6~, while ,t v = 6~ 
if v < v. Once we have this information, we shall use the computation with 
the average number of particles appearing in Lemma 3.2. 

To recall the needed coupling, let us first properly couple the initial 
measures ~,t~ and D. To do this, we take r/particles distributed according 
to #~,~ and suitably add ~ particles to the left of the origin, so that t /+ ~ is 
distributed according to v~. Now (r/,, ~t) evolves according to the Markov 
process on N Z x N ~ [ E x  E for unbounded rates g(-); cf. Section 5], whose 
generator L acts on cylinder functions f as 

Lf(tl, ~)= ~ g(tl(x)) p(x, y ) [ f ( t f f  'y, ~ ) -  f(t/, ~)] 
x ,V  

+ ~ [g(t/(x) + ~(x)) -- g(t/(x))] p(x, y)[f ( t / ,  ~x,y) --f(r/ ,  ~)] 
x ,  y 

(3.9) 

In this situation both (r/~) and (~l, + ~,) are zero-range processes with initial 
distributions/~.~ and D,  respectively. 

We would like to estimate the position of the rightmost ~ particle. For 
this we make a comparison with another system ( of particles. First let us 
label the ~ particles from right to left with superscript indices, using sub- 
script indices for the time, Thus we have 0 ~> ~0 t ~> ~ >~ -.. and ~] ~> ~ ~> . . ' .  

The ( particles, denoted by (~, 2 (,,..., will be such that 

(a) ~ = ~[~ for each i. 



276 Andjel and Vares 

(b) The ~ particles move independently according to continuous- 
time random walks whose holding times have rate 
c = dcr sup~ [g(k + 1) - g(k)]  and whose transition probabilities 
a r e  

0, n < 0  

p(0, n) = E p(0, y), n = 0 
y~<0 

p(0, n), n > 0 

Note that if we have exactly n of the ~ particles at a given site, then we 
may assume that each of them jumps at a rate [g(tl(x)+n ) -  gOl(x))]/n. 
But this is at most c, and we also have that the jumps of the ~ particles are 
stochastically larger than those of ~ particles. So, there is a coupling of 
and ~ satisfying 

P ( ~ < ( ~ ) = I  forall  t~>0, all i e N  

Let now ~---Sx>ox/5(0, x), which is finite by Assumption 2.1(b). Take 
v = 7 + 2 and note that the mean number of ~ particles at a site x < 0 and at 
time 0 is f l -  ~. Applying Wald's Lemma, we obtain 

1 / ~ - c ~  E- ~ ( , ( x ) - - - -  ~ P(A,>~ [ f t ]  + k )  (3.10) 
t t x>~ [vtJ k>-O 

where (t(x) is the number of ( particles at site x and time t, and A, is the 
random walk At = ( I -  (~. 

But, for t large enough the r.h.s, of (3.10) is bounded above by 

k~>0 

- - 7 - -  y '  P > ~ f + k  
k > ~ l  

<~ (fl-~)[t]+lEt - -~--Y 

which will tend to zero as t ~ +oe by the strong law of large numbers and 
a standard truncation argument. Now, if v > f and k e Z, we get 

lim E~t([vt] + x) 
t ~ + o o  

1 [~t] 
~< lim E E~Ay) 

1 - -  1 
~ < - - l i m -  ~ E ( t ( y ) = 0  (3.11) 

V - - V t ~  + ~  I y/> [stJ 



Attractive Particle Systems 277 

Since (q~+~,)rc~,~ has distr ibution v~, it follows easily that 
l im,~ +~ Ef(vE~ltt,)=v~(f) for any v>15 and any f bounded,  cylinder 
function, and so #v = vp if v e D and v > ~5. Similarly, we get _v, so that 
# v = v ~  for reD,  v<v. 

Next  we claim that  indeed #~ = v~ for all reD,  v < vc ~defined by 
(2.7)]. To see this, let us notice that  v~ ~</~,~ ~ v~, the attractiveness of  the 
process, and (3.4) imply 

t" 

+ 7 j ~0(p) 2 , (dp)  ~< (v - u)/~ (3.12) 

if u < v, both  in D. Taking u < v and v < v~, both  in D, and u < v, we have 

i.e., 

But, for p e [c~,/?], 

~ ( r  
(p  - c~) ~< ~0(p) - ~0(~) 

due to the concavi ty  of  ~0. Thus, we obtain 

Hence y p 2v (dp )=  cr if v < v~., i.e., 2L, = 6~ for such v, proving the claim. 
{Recall vc=?[~o(fi)-~o(cO]/(fl-cQ. } It remains to prove that 2 v = 6 ~  if 
v > v C (v ~ D). Let A(k, u, v) be the expression on the 1.h.s. of  (3.4), when 
# = #~.~. If  u, v ~ D with u < vc, ~7 < v, from (3.4) and the previous claim we 
have 

lira A(k,u,v)=vfl-7~o(B)-u~+?~o(a)=(v-vc)fi+(vc-u)~ (3.13) 
k ~  +oo  

On the other  hand, (3.4) and the monotonic i ty  of w ~ #w give 

lim A(k, u', v') <~ ( v ' -  u') f p2v,(dp) 
k 

for any u' < v', both in D. 
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Let us now suppose, by contradiction, 
v~ < v' ~< ~. Then, fix ~ > 0 so that 

Andjel and Vares 

that 2 , , r  for some 

Vc- - l ;Kd  <VcKU" Kvc+8 , vKv  

Then 

and so 

A ( k , u ' , v ) < ~ A ( k , u ;  u" ) + A ( k , u  " , v ' ) + A ( k , v , v ) + O ( - - ~ , ~ ) '  

l imA(k,  u', v) ~ fi(v - vc) - ~6(v' - v,.) 
k 

contradicting (3.13), and thus concluding the proof. | 

From Lemma 3.3 and the attractiveness of the process we get the following 
result: 

Proposition 3.4. I f 0 ~ < ~ < f l <  +oo, then 

lim IG,~S,r[,,? dt = (3.14) 
r : + ~  vp if v > v c  

where vc is given by Eq. (2.7). (For v = v, we do not say anything.) 

Proof. Since #~,~ ~< v/3 and the process is order-preserving (attractive), 
the set 

IG.~S,rEo,l dt: T>O,  v ~ R  

is relatively compact. The rest follows easily from Lemma 3.3. 
To conclude the proof of Theorem 2.4, we want to replace in 

Eq. (3.14) the convergence in the Cesaro sense by actual convergence, 
when v 4= v c. This is contained in the next result: 

and e, 0 < a < v ' - v , ,  so that 2~fl~<�89 and take v, u', u" in D so 
that 
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Propos i t i on  3.5. Let # be a probability measure on ~z  such that 
(a) # ~< v~ and (b) kt~ >~/~; and assume v0 finite exists so that 

lim t~S,~c~,~ dt = vr 
T ~  +oo  

for all v > Vo. Then 

lim r = v~ for all v > vo 
t ~  - - o O  

Proof. Since #S,~E,,,l<.%vr it will be enough 
l im ,~+~#S ,v~ t ]07 (x ) )= /~  for each V>Vo and x e Y .  
x e Z, and let 

6(0 = P - ~s,r  

(3.15) 

to show that 
N o w ,  fix t~>t~ o, 

so that 0 ~< 3(t), and we must show that lim~_§ +~ 6(0 = O. 
Notice that gS, rE,,~(~(x + y)) increases in y (since pr~ 1> ~); thus, if we 

take u so that Vo < u < v, and let 

then 

[z(v u ) / 2 ] -  1 

f(~,) de_r ~ q ( x -  y) (3.17) 
y = 0 

Now, from the expression 

Jo ~s=(f) = ~4f) + ~s, . (U) dr 

(3.18) 

(3.19) 

and the inequality 

tIS~(Lf) ~ q~(fi) ~ In[ p(O, n) = C(fl) < +co (3.20) 

[this is obtained from (2.1) if we consider only the positive terms in Lf],  
we get 

# S , + . , . r l v t j ( f ) ~ ( f l - 6 ( t ) ) [ ~ - t ] + s C ( [  0 (3.21) 

Therefore, if we take P e  (0, (v--u)~2 max(u, 1)), so that 

[ut+utP]<.. .ut(I+P)<---~--t<..[vt]- ~2 t +1 (3.22) 

(3.16) 
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then (3.17) and (3.21) yield 

#S, + srE~t + ~sl(~(x) ) <~ I ~  t] - ~ /~S, + sZE~o(f ) 

<-..[1-6(t)+C([1)tP v u �9 - -  t (3.23) 

for 0 <<. s <~ tP. {t large enough so that [�89 - u) t ] />  1. } It follows that  

1 ~t(1 +P) 
t(1 + P) Jo yS~rE,rl(tl(x)) dr 

p _ ~  P C([1) tP 
~< fi - b(t) q P + 1 [ � 8 9  u) t]  (3.24) 

But the 1.h.s. of (3.24) tends to [1 as t ~  + ~ ,  and we get 

lira sup 6(t) ~< 2C([1) P/(v - u) 

Since P can be taken arbitrarty small, the proposi t ion follows. | 

Proof of Theorem 2.4. F r o m  Proposi t ions 3.4 and 3.5 we have the 
result for v > vc. The case v < v~, also follows in the same way; "reversing 
inequalities" in Proposi t ion 3.5, we see that  for v~ ~< # and/~z~>~ y, if 

l i m l ; o Y S ~ r E ~ l d t = v ~  

for all v < vc, then we actually have limt/~Str t~2 = v~ for v < v~. 

4. P R O O F S  FOR D E C R E A S I N G  IN IT IAL PROFILE 

Proof of Theorem 2.10. We may apply Lemmas 3.1 and 3.2 with 
g=#~.B, where 0~<[1<c~< +oe.  If T,,/~ +o0 and (T,~), D, and #v(v~D) 
are given by Lemma 3.1, then t~=~vo).~(dp) for 2~ a probabil i ty on 
[[1, e l .  We first check the following: 

Claim 1, If v ~ D and v < 7~0'(~) Iv > 7q/(fl)] ,  then 2~ = 6~ ()~v = ~ ,  
respectively). 

The proof  of such a claim follows exactly the same argument  used to 
prove Lemma 3.3. Indeed, the coupling argument  gives, e.g., that  2~ = fie 
provided v is sufficiently large. Now,  if 7~o'(fl)< u < v and 2~ = 6~, then 
(3.4) and the monotonici ty-preserving proper ty  (attractiveness) yield 

(~ 



Attractive Particle Systems 281 

so that 

uf[~.~l (p-fl) 2.(dp)<~), f~,~3 [~o(p) - q)(fl)] 2,,(dp) (4.1) 

But, on (fl, c~] we do have [~0 (p ) -q~( f l ) ] / (p - f l )<  ~9'(fl), since ~9 is strictly 
concave. It then follows from (4.1) that )o,=6;~ for umD, u>Tcp'(fl). The 
other case is similar, proving the claim. 

From Claim 1 and the attractiveness of the process, just as in 
Propositions 3.4 and 3.5, we obtain 

{v~ for v < ~t~p'(~) (4.2) 
lim #~,S[~t]S,= for v>~,q/(fi) t? + m  ~"B 

Next, we check: 

Claim 2. If v e D and 7q~'(e) < v < ?,q~'(fi), then 2~ = cSp(o), with p( ' )  
defined by (2.9b). 

To check such a claim, we first take fi < ?qo'(7) < v < 7(P'(fl) < v. From 
the attractiveness we know 

li-~ /,~.~S, (~  ~. t/(x)) ~ ( v -  ~) ~ (4.3) 

Also, by Eq. (3.4) and Claim 1 

lira #=,#S, (~  ~ rt(x))=gfl-ycp(fl)-ffc~+y~p(a ) (4.4) 
t ~  +co [~t ]  ~<x~ D3t] 

Thus, from (4.3) and (4.4), it follows that 

lim #~,BS, (~  ~ ,l(x))>ffi-,/~9(fl)+~9(cQ-w (4.5) 
t ,~  + o o  [ v t ]  <~ x <-r [v t ]  

Since ,/(p'(c 0 < v < 7~o'(fl), we can write v = 7(o'(0), where fl < 0 < e and 
p(v) = 0, according to (2.9b). Taking any 0' such that 0 < 0' < e, we can use 
(4.5) for #0,,~, the fact that #0'.~ ~</2~,~, and the attractiveness to get 

lim ,=.eS,(~ ~ tl(x))>~ffl-Tq)(fl)+Tq)(O')-vO' (4.6) 

On the other hand, when v e D we also know from (3.4) that the 1.h.s. of 
(4.6) is at most 

--TcP(fl) + ~ f r 2~(dp)- v f p }..(do) 
Thus, taking limits as 0'~ 0, we get 

fe ,e3 Ergo(p)- vp ] do ) > o) - vo (4.7) 

822/47/1-2-19 
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But the strict concavity of ~o(. ) implies 

max [7~o(p) - vp] = 7~o(0) - vO 

and the maximum is at tained only at 0=(~o ' )  l(v/7),  provided 
7q~'(c~) < v < 7qo'(/~). The claim thus follows from (4.7). 

Since the measures (l/T)Ir/~=,~z[v~3St dt depend monotonical ly  on v 
and form a relatively compact  set, it easily follows that  

,!im l f~ l~ ,S[v ,3S ,  dt=vo(~) (4.8) 

for all v. It remains to prove that /~,~ZEv,3St~vp(v) as t - ,  +o9, when 
7q0'(~) < v < 7q~'(J~). [ F r o m  continuity of p ( . )  the result will then follow 
also at v = 7rp'(c~) or v = 7qo'(/~).] Now we shall check that if/i~ is a weak 
limit point  of #~,~T[~,]S,, then we should have: 

(a) /i~>~vp(~) (4.9) 
(b) / i j q ( 0 ) ) = p ( v )  

Indeed, given 7~p'(~)<v<7~p'(/~), let O=p(v) ,  so that  / ~ < 0 < ~  and 
7~P'(0) = v. If ~ is such that /~ < ~ < 0 < cr then 

/~0,~ T [~t] S~ <~ l~,/3z[~,] S~ (4.10) 

and v < 7~o'(0), so that (4.2) implies 

lim #~,FE~,]S,---vo (4.11) 
t ~ + o o  

Part  (a) in Eq. (4.9) now follows from (4.10) and (4.11). To  get (b), we 
notice that 

for fi < 7~o'(cr < 7~P'(/~) < v, so that, from (3.4), 

lim /~,~S, ~, ~/(x) = p(w) dw (4.12) 
t2 '  +o o  [ a t ] ~ x ~  [t3t] 

and (b) follows from (4.12), and (a) in (4.9) with the same argument as in 
Ref. 3, p. 332 (proof  of Theorem 3.2), but  reversing inequalities. This com- 
pletes the proof. I 
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We conclude this section showing how to use the result just proven to 
get Theorem 2.11. Basically, we use the method of characteristics for (2.4), 
and the attractiveness of these processes. In Ref. 3 this argument was par- 
tially used in the proof of the same result when p ( x , x +  1)=  1 and 
g(k)=f(k>>.~). Nevertheless, they also use some particularities of the 
coupling, which are not possible in this more general context. Assuming 
that P o ( )  is bounded, these can be avoided, as we show next. 

Proof  o f  Theorem 2.1 I. For P0(' ) satisfying our hypotheses, the uni- 
que smooth solution of (2.4) can be obtained through the method of 
characteristics. For  any given pair (x, t) with t > 0 ,  the characteristics 
through (x, t) intersect ~ x {0} at a unique point (y(x ,  t), 0) and 

x -  y(x,  t) = t~o'(po(y(x,  t) ) ) 

so that 

p(x,  t) = po(x - tTCo'(po(y(x, t)))) 

is the solution of (2.4) (Ref. 17, p. 243). Fix (x, t) and let /5 be such that 
p(x, t) < t7 < supy Po(Y). There exists a unique z such that r = po(z), and we 
have z < y ( x , t ) .  Also, the strict concavity of ~o(-) implies that 
~p'(po(z)) < q)'(po(y(x, t))). Thus 

x - z > tT~o'(po(z)) (4.13) 

L e t / ~  be the product measure such that 

~(~(u)=k)=vpo~z~(~(u)=k)  if u>>.Ez~ 1]+ l  

= vp.(q(u) = k) if u ~< [ z s -  1 ] 

where p* = SUpr po(r) ~ [0, + oe). Thus, 

].L s ~ ] ~  = ]2p. po(z) 72 _ [z~-l] 1 

and by the attractiveness 

/'{~'[r~ I ] S t ~ : - I ~ # p * , p o ( z ) ' ~ [ x e - I  ] [z~ ' l - l S ~  ~ (4.14) 

From (4.13), (4.14), and (2.9) it follows that if/7 is a weak limit point of 
#'rE~-,2S,~-,,  then /7 ~< vo0(~ ). Since po(z )=  r can be taken arbitrarily close 
p(x,  t), we see that/7 ~< vo(.~ ' ,)- 

Conversely, letting infy Po(Y) < P < p(x,  t), we have p_ = Po(Y) for 
some y > y(x ,  t) and x - y < t~o'(po(y)). Letting now/~y = ktp(~).oZ_ Ey~ '1 - 1 
and arguing as before, we see that if /~ is a weak limit point of 
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Y~E~ l]St~ 1, then vp(,.t)<<, ft. On the other hand, from the boundedness of 
P0('), we already know that {y~rEx ~ l]St~ 1: ee(0,  1)} is a relatively com- 
pact set, and the proof follows. | 

5. EXTENSIONS A N D  C O M P L E M E N T S  

Remark 5.1. For simplicity we have stated the results under the 
assumption of a bounded rate function g(.). Nevertheless, this was not 
really used in the proofs. That is, if we make the following assumptions: 

A s s u m p t i o n  5.2. 

(a) g: N ~ [0, +oo) is nondecreasing, g ( 0 ) = 0 <  g(1), and 
supk [ g ( k +  1 ) -  g(k)] < +m.  

(b) Same as Assumption 2.1(b). 

Then exactly the same results as stated in Section 2 continue to hold if 
we relax Assumptions 2.1 to Assumptions 5.2. 

Indeed, the only point is the needed modification for the construction 
of the process itself. Now, one has to restrict the set E of allowed con- 
figurations, but it is possible to construct (St) strongly continuous, Markov 
semigroup corresponding to the pregenerator L given by (2.1). Using the 
construction of Ref. 1, we see that under Assumptions 5.2 the measures vp 
defined by (2.3) do satisfy vp(E)= 1, and {vp:O<~p< +oe} is the set of 
extremal measures in J c~ 5 #. Now, the reader can immediately check that 
all arguments previously used do apply to this situation. The crucial point 
is the first statement of Lemma 3.3, but the necessary boundedness is con- 
tained in (3.10), corresponding exactly to what we do have. 

Remarks 5.3. Cocozza (5) studied a class of interacting particle 
systems so that the rate at which a particle at site x jumps to site y is 
bOl(x), q(y)) p(x, y), where the jump probabilities p(., .) are translation- 
invariant and the rate function bOl(X), ~I(Y)) increases in t/(x) and 
decreases in t/(y). Such a condition on b(', .) yields the property of attrac- 
tiveness for this class of processes (called "misanthropes"). The point of this 
remark is to notice that the arguments of Sections 3 and 4 can be extended 
to this situation. More precisely, let us make the following: 

Assumptions 5.4: 

(a) b: % x N ~ [0, +oe)  is bounded, b(0,-)-=0, b(1, j ) > 0  for all j; 
i-+ b(i, j) is an increasing function for each j; j ~  b(i, j) is a 
decreasing function for each i. 

(b) Assumptions (2.3) and (2.4b) of Ref. 5. 

(c) p(x, y) satisfies Assumptions 2.1(b) of the present article. 
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The generator L of the process acts on cylinder functions f on N z as 

Lf(tl) = ~ b(tl(x), q(y))p(x ,  y)[f(qx, y ) -  f ( t / ) ]  (5.1) 
x , y  

and for any t/e N z there exists a unique probability P,  on D([0, + oo), N z) 
that solves the martingale problem associated to such L (Theorem 1.3 of 
Ref. 5). Let (S,) be the corresponding Markov semigroup, and let J be the 
set of (S,)-invariant probability measures. 

Under hypotheses more general than Assumptions 5.4, it is proven in 
Ref. 5 that the extremal measures of J c~ 5 f form a one-parameter family 
(vp: 0 ~< p < +oo), characterized by: 

(i) vp(~(x)) = p 

(ii) vp is a product measure and 

v p ( q ( x ) = i + l )  vp(t / (x)=l)  b(1, i) 

vp(tl(X ) = i) vpOl(x) = O) b(i + 1, O) 
(5.2) 

which extends (2.3). 
If we set 

h(p) =Y, yp(0, y) vp(h(~(0), ~(y))) (S.3) 
Y 

it is easily seen that now the "hydrodynamic equation" should be 

3p 
(x, t) + ~  h(p(x, t)) = 0 

dt 
(5.4) 

p(., 0) = po(  ) 

where Po( )  is the initial (macroscopic) profile. 
What we can easily get from the previous work is that by changing 

7~o(. ) to h(' ) everywhere, than all the results of Section 2 do extend to this 
situation. That is, if we assume: 

(i) 

(ii) 

then: 

A. 

Assumptions (5.4) 

The function h( ' )  is concave 

Theorem 2.4 is true, provided we take 
< = D ( ~ )  - h ( ~ ) 3 / ( ~  - c 0 .  
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B. Assuming, moreover, that h ( )  is smooth (C 2 suffices) we expect 
Conjecture 2.7 to hold in this case, too, provided Eq. (2.4) is 
replaced by Eq. (5.4). 

C. Similarly, changing 7q)(') to h(.), Theorems 2.10 and 2.11 con- 
tinue to hold. 

We shaU omit the details of the proofs, since they are essentially the 
same as in the case of zero range. The points to be careful about are: 

1. The computation of Lemma 3.2 (cf. Appendix), which works just 
as before if we take 

2. The coupling on the first part of Lemma 3.3. 

Note that if b is given by 

fO if j ~  1 
b(i,j)= i/x 1 if j = O  

then restricting the process to {0, 1} ~, we obtain the simple exclusion 
process, and h(p)=Tp(1-p) .  Since this is concave, our proofs apply to 
this case, and thus the results of Refs. 4, 11, 12, and 16 are extended. [-Of 
course, the above rate function b(., .) does not satisfy Assumption 5.4(a), 
as required in Ref. 5, but this does not pose any problem for our proofs, 
since the characterization of J c~ 5 p in this case is known.] 

A P P E N D I X  

Here we present the computation leading to (3.4). Letting G(.) be 
defined by (3.6), we have 

G(T~k) 1 ~r.k G'(s) ds (A.!) 
T,~ Tin, do 

and if ut, vt(~2_, G'(t) is given by Eq. (3.7). From (3.1), the translation 
invariance of g~, and Assumption 2.1(b), we see that 

1 ~C'(t)dt-[v~,~(,7(0)) ~( ,7(0))]--~jo Iu.~(t),tt (A.2) T,~ 
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tends to zero as k --* 0% where 

Iu.v(t)= - ~ IJS,(g(rl(x))){P(Y> [vt] + l - x )  
x <~ [ v t ]  

+(1--Vt+ [Vt]) P( Y= [vt] + l--x)} 

+ F, uS,(g(~(x))){P(r~[vt]-x)  
x > [ v t ]  + 1 

+ (vt-- [vt]) P(Y= [vt]+ 1 - x )  

-- ~ t~St(g(tl(x))){P(Y< [ut] - x )  
[ u t ]  + 1 <~ x 

+ (ut-  Jut]) P(Y= jut3 - x ) }  

+ ~ ]4S,(g(tl(x))){P(Y> [ut] + l - x )  
x < [u~] 

+ (Jut] + 1 - u t )  P ( Y =  Jut] + l - x ) }  

+ l~S,(g(tl([vt] 4- 1)))(1 - v t  4- [v t ] )  P(Y <~ - 1 )  

+ ~S,(g(~([ut])))(u~- FutJ) P(Y>~ 1) 

- #S,(g(tl([vt ] + 1 ) ) ) ( v t -  [ v t ] ) P ( Y > ~  1) 

- #S,(g(rl([ut])))([ut ] 4- 1 - u t )  P( Y <. - 1 )  

where Y is a r a n d o m  variable such that  

P ( Y =  y) = p(0, y)  

for y e Z .  Again, using (3.1) we get 

1 tTok 
lira dt 

z > ~ l  z~< 1 

z ~ > l  z~< I 

= y[#u(g(q(0) ) )  - #v(g(q(0) ) ) ]  

proving the Lemma.  

R e m a r k .  In (A.2) we use ~ y  IY] p(0, y)  < +oe  to add terms such as 
Zx<~E, , ]P(Y>[v t ] -x )  and Zx>C~]P(Y<~[u t ] -x )  to the exact 
expression of L(-) .  N o w  if u <  v, as tl" +0% these tend to zero by the 
domina ted  convergence theorem if E I YI < +oo.  
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